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Abstract

We give a generator of the space spanned by double zeta values of level 2 with odd
weight by using explicit formulas for double Euler sums.

1 Introduction and main results

Double zeta values of level 2 are defined by

ζo(r, s) =
∑

m>n>0
m,n:odd

1

mrns
, (1)

where r, s are positive integers with r ≥ 2. These real values can be regarded as a kind
of Euler sums (see Section 2) or multiple Hurwitz series (see [8]), which are well-studied,
but apparently it is believed that the form (1) matches the theory of modular forms. The
relationship between double zeta values and modular forms was originally studied in [5]. As
a consequence of their study, Kaneko and Tasaka [7] considered the case of level 2 involved
“double Eisenstein series”, and they found an explicit connection between modular forms of
Γ0(2) and (1), when weight (= r + s) is even.

In the present paper, we mainly discuss the case of odd weight. Let DOk be the Q-vector
space spanned by double zeta values of level 2 and weight k, namely,

DOk = ⟨ζo(r, k − r) | 2 ≤ r ≤ k − 1⟩Q.

We first introduce our result about a generator of the space DOk.

Theorem 1. For odd k ≥ 3, the (k + 1)/2 numbers {(log 2)πk−1, ζ(k − 2i)π2i | 0 ≤ i ≤
(k − 3)/2} span the same space as the space DOk.

We remark that Theorem 1 can be viewed as the level 2 version of Zagier’s result ([11,
Theorem 2]). He proved that, for odd k ≥ 5, the Q-vector space DZk generated by double
zeta values ζ(r, s) =

∑
m>n>0m

−rn−s of weight k has the generator {ζ(k − 2i)π2i | 0 ≤
i ≤ (k − 3)/2}, which we believe being a base. He also showed that the (k − 1)/2 numbers
ζ(k − 1 − 2i, 2i + 1) (0 ≤ i ≤ (k − 3)/2) satisfy dimSk−1(1) + dimSk+1(1) = [(k − 11)/6]
Q-linear relations (see [11, Theorem 3]), where Sk(1) is the space of cusp forms of weight k
on SL2(Z). The same discussion for our case is given in the following theorem.
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Theorem 2. For odd k ≥ 5, the Q-vector space spanned by ζo(i, k − i) (2 ≤ i ≤ k − 2) is
the same space as DZk.

Theorem 2 implies that the k−3 numbers ζo(i, k−i) (2 ≤ i ≤ k−2) satisfy dimSk−1(2)+
dimSk+1(2) = (k−5)/2 Q-linear relations, where Sk(2) is the space of cusp forms of weight k
on Γ0(2). However, there are no direct connection between “period polynomials” and double
zeta values of level 2 in the meaning as in SL2(Z) (see [11, Section 6]).

In Section 2, we give proofs of Theorems 1 and 2 by using explicit formulas of double
zeta values of level 2 which follows from evaluations of double Euler sums. The last section
we present some remarks on the sum formula of double zeta values of level 2.

2 Euler sums and proof of Theorem 1

Now we define the double Euler sums by

ζ(r, s) =
∑

m>n>0

1

mrns
(r ≥ 2, s ≥ 1), ζ(r, s) =

∑
m>n>0

(−1)n

mrns
(r ≥ 2, s ≥ 1),

ζ(r, s) =
∑

m>n>0

(−1)m

mrns
(r, s ≥ 1), ζ(r, s) =

∑
m>n>0

(−1)n+m

mrns
(r, s ≥ 1).

(Each ranges of r, s give convergence conditions of each double series.) These real values
have a deep connection with knot theory and quantum field theory (e.g. [2, 3]), and many
studies have been done. In [3], they conjectured about the number of (algebra) generators
of the space of Euler sums. Let DLk be a Q-vector space spanned by double Euler sums of
weight k. We can easily deduce that Broadhurst-Kreimer conjecture involved double Euler
sums says

dimQ DLk =

[
k + 1

2

]
(k ≥ 2).

For odd k > 2, we can prove that the space DLk is spanned by the set {(log 2)πk−1, ζ(k −
2i)π2i | 0 ≤ i ≤ (k− 3)/2} by using the following closed formulas for double Euler sums (see
for example [10, (4) and (5)]). Let ζ(k) =

∑
n>0(−1)nn−k. We note that ζ(1) = − log 2 and

ζ(k) = (21−k − 1)ζ(k) for k ≥ 2.

Proposition 3. For odd k ≥ 3 and positive integers r, s with r + s = k, double Euler sums
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are given in terms of products ζ(2i)ζ(k − 2i), ζ(2i)ζ(k − 2i) and ζ(2i)ζ(k − 2i) as follows:

2ζ(r, s) = ζ(r)ζ(s)− ζ(k)− (−1)sζ(r)ζ(s) + (−1)s

{
−

(
k − 1

r

)
ζ(k)

−
(
k − 1

s

)
ζ(k) + 2

[r/2]∑
j=1

(
k − 2j − 1

r − 2j

)
ζ(k − 2j)ζ(2j)

+ 2

[s/2]∑
j=1

(
k − 2j − 1

s− 2j

)
ζ(k − 2j)ζ(2j)

}
(for all r, s ≥ 1), (2)

2ζ(r, s) = ζ(r)ζ(s)− ζ(k)− (−1)sζ(r)ζ(s) + (−1)s

{
−

(
k − 1

r

)
ζ(k)

−
(
k − 1

s

)
ζ(k) + 2

[r/2]∑
j=1

(
k − 2j − 1

r − 2j

)
ζ(k − 2j)ζ(2j)

+ 2

[s/2]∑
j=1

(
k − 2j − 1

s− 2j

)
ζ(k − 2j)ζ(2j)

}
(for all r ≥ 2, s ≥ 1), (3)

2ζ(r, s) = ζ(r)ζ(s)− ζ(k)− (−1)sζ(r)ζ(s) + (−1)s

{
−

(
k − 1

r

)
ζ(k)

−
(
k − 1

s

)
ζ(k) + 2

[r/2]∑
j=1

(
k − 2j − 1

r − 2j

)
ζ(k − 2j)ζ(2j)

+ 2

[s/2]∑
j=1

(
k − 2j − 1

s− 2j

)
ζ(k − 2j)ζ(2j)

}
(for all r ≥ 1, s ≥ 2). (4)

The exceptional case of (4), which is s = 1, can be written as follows:

2ζ(r, 1) = ζ(r + 1) + (r − 1)ζ(r + 1)− 2

r/2−1∑
j=1

ζ(r + 1− 2j)ζ(2j). (5)

Zagier showed that the double zeta value ζ(r, s) with r+ s = k (k:odd) can be expressed
as Q-linear combinations of two products ζ(2i)ζ(k − 2i) (0 ≤ i ≤ (k − 3)/2) (see [11,
Proposition 7]), using his method which is based on the double shuffle relations and the
theory of generating functions. By his results and Proposition 3, the space spanned by
{(log 2)πk−1, ζ(k − 2i)π2i | 0 ≤ i ≤ (k − 3)/2} contains DLk. Conversely, using shuffle
products (see [1]), we can easily check that two products of ζ(2i)ζ(k − 2i) (0 ≤ i ≤ (k−1)/2)
are in the space DLk. Then we have the following theorem.

Theorem 4. For odd k ≥ 3, the (k + 1)/2 numbers {(log 2)πk−1, ζ(k − 2i)π2i | 0 ≤ i ≤
(k − 3)/2} span the same space as DLk.
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Now we begin considering the case of double zeta values of level 2 and shall give a proof
of Theorem 1. For r ≥ 2 and s ≥ 1, it is easily seen that

ζo(r, s) =
1

4
(ζ(r, s)− ζ(r, s)− ζ(r, s) + ζ(r, s)), (6)

and this shows that DLk contains DOk. (However, more precisely, one can find DLk = DOk

from Theorem 1 and Theorem 4.) Using (2), (3), (4), (5) and (6), we can easily obtain the
explicit formulas for double zeta values of level 2.

Proposition 5. For odd k ≥ 5 and k = r + s (r, s ≥ 2), one has

2ζo(r, s) = −ζo(k) + (1− (−1)s)ζo(r)ζo(s) (7)

+ 2(−1)s
max([r/2],[s/2])∑

j=1

((
k − 2j − 1

r − 2j

)
+

(
k − 2j − 1

s− 2j

))
ζe(k − 2j)ζo(2j),

where ζe(k) =
∑

n>0(2n)
−k. Furthermore, for a ≥ 1, we have

2ζo(2a, 1) =− 2
a−1∑
j=1

ζe(2a− 2j + 1)ζo(2j)− 2ζ(1)ζo(2a)− ζo(2a+ 1)). (8)

Our strategy to prove Theorem 1 is to find a basis of the space DOk. To do this, now we
give following two lemmas.

Lemma 6. For odd k ≥ 3, the (k − 1)/2 numbers {ζ(k − 2i)π2i | 0 ≤ i ≤ (k − 3)/2} span
the same space as the (k − 1)/2 numbers {ζo(k − 2r, 2r), ζo(k) | 1 ≤ r ≤ (k − 3)/2}.

Proof. Using (7), for odd k ≥ 5, one has

ζo(k − 2r, 2r)

= −1

2
ζo(k) +

(k−3)/2∑
j=1

((
k − 2j − 1

k − 2r − 1

)
+

(
k − 2j − 1

2r − 1

))
ζe(k − 2j)ζo(2j).

Let Mk be the (k − 1)/2× (k − 1)/2 matrix whose coefficients are

mrj =

{(
k−2j−1
k−2r−1

)
+
(
k−2j−1
2r−1

)
1 ≤ r, j ≤ (k − 3)/2,

δr,j others,

where δr,j is Kronecker’s delta. Surprisingly, the matrix Mk is exactly equal to A of [11,
Lemma 3] excepting 1-th row and 1-th column of Mk, and then it has non-zero determinant.
This induces the following equality:

⟨ζo(k), ζo(k − 2i, 2i) | 1 ≤ i ≤ (k − 3)/2⟩Q (9)

= ⟨ζo(k), ζe(k − 2i)ζo(2i) | 1 ≤ i ≤ (k − 3)/2⟩Q,

which completes the proof of Lemma 6.
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Note that since ζo(k) = (1− 2−k)ζ(k) and ζe(k) = 2−kζ(k) for k ≥ 2, the right hand-side
of (9) is equal to the space DZk.

Lemma 7. For each odd k ≥ 3, ζo(k) can be expressed as Q-linear combinations of ζo(r, k−
r) (2 ≤ r ≤ k − 2).

Proof. It is easy to check the following

ζo(2, k − 2)

= −1

2
ζo(k) + ζo(2)ζo(k − 2)−

(k−3)/2∑
j=1

k − 2j − 1 + δj,1
2k−2j − 1

ζo(k − 2j)ζo(2j).

Using ζo(a)ζo(b) = ζo(a, b) + ζo(b, a) + ζo(a+ b), we have

ζo(k)

(
−1

2
+

(k−3)/2∑
j=1

k − 2j − 1 + δj,1
2k−2j − 1

)

= ζo(k − 2, 2)−
(k−3)/2∑
j=1

k − 2j − 1 + δj,1
2k−2j − 1

(ζo(k − 2j, 2j) + ζo(2j, k − 2j)).

The coefficient of ζo(k)/2

2

(
−1

2
+

(k−3)/2∑
j=1

k − 2j − 1 + δj,1
2k−2j − 1

)
are non-zero, because it is a 2-adic unit, which completes the proof.

Proof of Theorem 1. Let DOev
k be the space spanned by {ζo(k− 2r, 2r), ζo(k− 1, 1), ζo(k) |

1 ≤ r ≤ (k − 3)/2}, so that,

DOev
k = ⟨ζo(k − 2r, 2r), ζo(k − 1, 1), ζo(k) | 1 ≤ r ≤ (k − 3)/2⟩Q.

From Lemma 6 and (8), we have

⟨(log 2)πk−1, ζ(3)πk−3, . . . , ζ(k − 2)π2, ζ(k)⟩Q = DOev
k .

On the other hand, by Proposition 5 and Lemma 7, one can find

⟨(log 2)πk−1, ζ(3)πk−3, . . . , ζ(k − 2)π2, ζ(k)⟩Q ⊃ DOk ⊃ DOev
k ,

which completes the proof of Theorem 1.

Proof of Theorem 2. Let DO∗
k be the space spanned by ζo(r, k − r) (2 ≤ r ≤ k − 2). By

Proposition 5 and Lemma 6, the space generated by {ζ(k− 2i)π2i | 0 ≤ i ≤ (k− 3)/2} is the
same space as the space DO∗

k, and this induces DO∗
k = DZk, which completes the proof of

Theorem 2.
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3 Remarks on the sum formula

When k is even, Kaneko and Tasaka found the relationship between double zeta values of
level 2 and modular forms (see [7, Corollary p.17]), and they also showed the following sum
formula (see [7, Theorem 1]), using their ‘double shuffle relation’.

Proposition 8. For even k ≥ 4, we have

k/2−1∑
r=1

ζo(2r, k − 2r) =
1

4
ζo(k). (10)

Proposition 8 can be extended to certain symmetric sums of multiple zeta values of level
2 by using Hoffman’s ‘harmonic product’ (see [6, Theorem 2.2]). In this section, we give
another proof of Proposition 8 using certain properties of the Bernoulli polynomials.

We denote by Bn(x) the n-th Bernoulli polynomial defined by

tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π,

and the n-th Bernoulli number Bn by Bn := Bn(0). Euler proved the next equations;

Lemma 9. For n ≥ 1, we have

ζo(2n) = (1− 2−2n)ζ(2n) and ζ(2n) = −(−4π2)n

2(2n)!
B2n. (11)

Lemma 10 (see [4, p. 4, 6 and 119]). We have the following properties;

B2n−1 = 0, n ≥ 2, (12)

Bn(1/2) = −(1− 21−n)Bn, (13)
n∑

m=0

(
n

m

)
Bm(x)Bn−m(y) = n(x+ y − 1)Bn−1(x+ y)− (n− 1)Bn(x+ y). (14)

Proof of Proposition 8. This is an analogue of the proof of [9, Theorem A]. Put x = y = 1/2
in (14) and use (12) and (13). Then we have

n∑
m=0

(
n

m

)
Bm(1/2)Bn−m(1/2)

=
n∑

m=0

(
n

m

)
(1− 21−m)(1− 21−n+m)BmBn−m = −(n− 1)Bn.

Obviously, one has

(1− 21−m)(1− 21−n+m) = 2(1− 2−m)(1− 2−n+m) + 2(2−m − 1) + 1,
2n∑

m=0

(
2n

m

)
BmB2n−m = −(2n− 1)B2n.
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Therefore it holds that

2n−2∑
m=2

2(1− 2−m)(1− 2−n+m)

(
2n

m

)
BmB2n−m = (2−2n − 1)(2n− 1)B2n.

By using (11), we obtain

n−1∑
m=1

ζo(2m)ζo(2n− 2m) =
2n− 1

2
ζo(2n). (15)

On the other hand, by the harmonic product formula, it holds that

ζo(2m)ζo(2n− 2m) = ζo(2m, 2n− 2m) + ζo(2n− 2m, 2m) + ζo(2n).

By summing the above formula on m from 1 to n− 1, we have

n−1∑
m=1

ζo(2m)ζo(2n− 2m) = 2
n−1∑
m=1

ζo(2m, 2n− 2m) + (n− 1)ζo(2n). (16)

Hence we obtain Proposition 8 by (15) and (16).
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