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Abstract

We give a generator of the space spanned by double zeta values of level 2 with odd
weight by using explicit formulas for double Euler sums.
1 Introduction and main results

Double zeta values of level 2 are defined by

Crs)= Y — 1)

mrns’
m>n>0
m,n:odd

where r, s are positive integers with » > 2. These real values can be regarded as a kind
of Euler sums (see Section 2) or multiple Hurwitz series (see [8]), which are well-studied,
but apparently it is believed that the form (1) matches the theory of modular forms. The
relationship between double zeta values and modular forms was originally studied in [5]. As
a consequence of their study, Kaneko and Tasaka [7] considered the case of level 2 involved
“double Eisenstein series”, and they found an explicit connection between modular forms of
['g(2) and (1), when weight (=7 + s) is even.

In the present paper, we mainly discuss the case of odd weight. Let DOy be the Q-vector
space spanned by double zeta values of level 2 and weight k, namely,

DO, ={(¢°(r,k—r)|2<r<k—1)g.
We first introduce our result about a generator of the space DOy.

Theorem 1. For odd k > 3, the (k + 1)/2 numbers {(log2)7* !, ((k — 2i)7* | 0 < i <
(k —3)/2} span the same space as the space DOy,.

We remark that Theorem 1 can be viewed as the level 2 version of Zagier’s result ([11,
Theorem 2]). He proved that, for odd k& > 5, the Q-vector space DZ;, generated by double
zeta values ((r,s) = > m~"n~® of weight k has the generator {¢(k — 2i)7* | 0 <
i < (k —3)/2}, which we believe being a base. He also showed that the (k — 1)/2 numbers
Ck—1—2i,2i+1) (0 < i< (k—3)/2) satisfy dim Sy_1(1) + dim Sgs1(1) = [(k — 11)/6]
Q-linear relations (see [11, Theorem 3]), where Sk (1) is the space of cusp forms of weight &
on SLy(Z). The same discussion for our case is given in the following theorem.



Theorem 2. For odd k > 5, the Q-vector space spanned by (°(i,k —1i) (2 <i <k —2) is
the same space as DZy.

Theorem 2 implies that the k—3 numbers (°(i, k—1i) (2 < i < k—2) satisfy dim Si_1(2) +
dim Sy41(2) = (k—5)/2 Q-linear relations, where Sy (2) is the space of cusp forms of weight k
on I'g(2). However, there are no direct connection between “period polynomials” and double
zeta values of level 2 in the meaning as in SLy(Z) (see [11, Section 6]).

In Section 2, we give proofs of Theorems 1 and 2 by using explicit formulas of double

zeta values of level 2 which follows from evaluations of double Euler sums. The last section
we present some remarks on the sum formula of double zeta values of level 2.

2 Euler sums and proof of Theorem 1

Now we define the double Euler sums by
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(Each ranges of r, s give convergence conditions of each double series.) These real values
have a deep connection with knot theory and quantum field theory (e.g. [2, 3]), and many
studies have been done. In [3], they conjectured about the number of (algebra) generators
of the space of Euler sums. Let DL be a QQ-vector space spanned by double Euler sums of
weight k. We can easily deduce that Broadhurst-Kreimer conjecture involved double Euler

sums says
k+1
dimg DLy = {%1 (k> 2).
For odd k > 2, we can prove that the space DL is spanned by the set {(log2)7*~, ((k —
2i)m* | 0 < i < (k—3)/2} by using the following closed formulas for double Euler sums (see
for example [10, (4) and (5)]). Let ((k) = >_,.,(—1)"n~*. We note that {(I) = —log2 and

C(k) = (1% — 1)¢(k) for k > 2.

Proposition 3. For odd k > 3 and positive integers r,s with r + s = k, double Euler sums



are given in terms of products ¢(2i)(k — 21), ((2i)¢(k — 2i) and ¢(21)((k — 2i) as follows:

2(r.3) = C(FICG) - <) — (~1)CFICE) + <—1>S{ (7)o
[r/2] .
(" emae (M, er i)
[s/2]
+2; (k 2j2]_, 1)((/{:—2])((2])} (for all ;s > 1) (2)

(- 1)4@ g (472 e

j=1
[s/2] o
+22< o2 ) (k—Qj)g(Qj)} (for all T >1,s > 2). (4)
The exceptional case of (4), which is s = 1, can be written as follows:
r/2—1
20, 1) = Cr+ 1) + (r =S F1) =2 Y ¢(r+1-25)¢(2)). (5)

J=1

Zagier showed that the double zeta value ((r, s) with r+ s = k (k:odd) can be expressed
as Q-linear combinations of two products ((2i)((k — 2i) (0 < i < (k — 3)/2) (see [11,
Proposition 7]), using his method which is based on the double shuffle relations and the
theory of generating functions. By his results and Proposition 3, the space spanned by
{(log2)m*=1 ¢(k — 2i)7* | 0 < i < (k — 3)/2} contains DL;. Conversely, using shuffle
products (see [1]), we can easily check that two products of ((2¢)((k —2i) (0 <i < (k—1)/2)
are in the space DL;. Then we have the following theorem.

Theorem 4. For odd k > 3, the (k + 1)/2 numbers {(log2)7*= 1, ((k — 2i)7* | 0 < i <
(k —3)/2} span the same space as DLj,.



Now we begin considering the case of double zeta values of level 2 and shall give a proof
of Theorem 1. For r > 2 and s > 1, it is easily seen that

C(r,5) = 1) = G ) = C) + (7. 5)), ()

and this shows that DLy, contains DOy. (However, more precisely, one can find DLy = DOy,
from Theorem 1 and Theorem 4.) Using (2), (3), (4), (5) and (6), we can easily obtain the
explicit formulas for double zeta values of level 2.

Proposition 5. For odd k > 5 and k =1+ s (r,s > 2), one has

20°(r;s) = =C°(k) + (1 = (=1)")¢°(r)¢°(s) (7)
/D) i Eooj o1\ L .
EEUDS (72, + (557, 1) et 2inceee,
where (®(k) = >, .o(2n)~%. Furthermore, for a > 1, we have
20°(20,1) = =23 C*(2a = 2+ 1)¢°(2j) = 2(T)¢°(2a) = ¢*(2a + 1)). (8)

Our strategy to prove Theorem 1 is to find a basis of the space DOy. To do this, now we
give following two lemmas.

Lemma 6. For odd k > 3, the (k — 1)/2 numbers {C(k — 2i))7% | 0 < i < (k — 3)/2} span
the same space as the (k —1)/2 numbers {¢°(k — 2r,2r),¢°(k) | 1 <r < (k —3)/2}.

Proof. Using (7), for odd k > 5, one has

((Z - D + (k i 1)) ¢o(k - 25)¢°(24).

Let My be the (k —1)/2 x (k —1)/2 matrix whose coefficients are

= {(Z_ii_b () 1< <k -3)/2,
Or.j others,

C°(k —2r,2r)
(h=3)/2

=W+ Y

J=1

where 0, ; is Kronecker’s delta. Surprisingly, the matrix M; is exactly equal to A of [11,
Lemma 3] excepting 1-th row and 1-th column of My, and then it has non-zero determinant.
This induces the following equality:

(C°(k),C°(k = 2i,2i) [ 1 <i < (k= 3)/2)q (9)
= (C°(k), C®(k — 2i)¢°(2i) | 1 < i < (k = 3)/2)q,
which completes the proof of Lemma, 6. ]



Note that since (°(k) = (1—27%)((k) and (k) = 27%( (k) for k > 2, the right hand-side
of (9) is equal to the space DZy.

Lemma 7. For each odd k > 3, (°(k) can be expressed as Q-linear combinations of (°(r, k —
r)(2<r<k-2).

Proof. 1t is easy to check the following
C°(2,k—2)

(k—3)/2

1
— -5 +C@CHk -2~ Y

Jj=1

I{J—Qj - 1—1—(5]',1
2k=2 — 1

¢k —27)¢°(2)).

Using ¢°(a)¢°(b) = ¢°(a,b) + ¢°(b,a) + (°(a +b), we have
(k—3)/2

o 1 E—2j—1+0;,
¢°(k) <_§ + Z ok—2j _ 1 >

j=1

(k—3)/2

= °(k—-2,2)— )

J=1
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(Co<k - 2.]7 2.7) + CO(Qjak? - 2]))

The coefficient of (°(k)/2
(k=3)/2

1 k—2j—1+0;,
25+ > TR

J=1

are non-zero, because it is a 2-adic unit, which completes the proof. O

Proof of Theorem 1. Let DO}’ be the space spanned by {(°(k — 2r,2r),(°(k—1,1),¢°(k) |
1 <r < (k—3)/2}, so that,

DO = (¢°(k —2r,2r),(°(k—1,1),¢%k) |1 <r < (k—3)/2)g.
From Lemma 6 and (8), we have
(log2)m1, ¢(3)T, . C(k — )7, C(k))q = DOL.
On the other hand, by Proposition 5 and Lemma 7, one can find
((log2)m™ 1 ¢(3)n" 3 ... ¢(k — 2)7*,((k))g D DOy D DOYY,
which completes the proof of Theorem 1. ]

Proof of Theorem 2. Let DO;, be the space spanned by ¢°(r,k —r) (2 < r < k—2). By
Proposition 5 and Lemma 6, the space generated by {((k —2i)7% | 0 <14 < (k—3)/2} is the
same space as the space DOy, and this induces DO, = DZ, which completes the proof of
Theorem 2. ]



3 Remarks on the sum formula

When £ is even, Kaneko and Tasaka found the relationship between double zeta values of
level 2 and modular forms (see [7, Corollary p.17]), and they also showed the following sum
formula (see [7, Theorem 1]), using their ‘double shuffle relation’.

Proposition 8. For even k > 4, we have

k/2—1

> k- 2r) = 1), (10)

Proposition 8 can be extended to certain symmetric sums of multiple zeta values of level
2 by using Hoffman’s ‘harmonic product’ (see [6, Theorem 2.2]). In this section, we give
another proof of Proposition 8 using certain properties of the Bernoulli polynomials.

We denote by B, (z) the n-th Bernoulli polynomial defined by

tet® o0 tn
— = Bula) t < 2m,

and the n-th Bernoulli number B,, by B,, := B,(0). Euler proved the next equations;
Lemma 9. Forn > 1, we have

(—4m?)m

Clom) = (1 =27 (2n)  and ((20) = g

Bon. (11)

Lemma 10 (see [4, p. 4, 6 and 119]). We have the following properties;

Bgn_l = 0, n 2 2, (12)
B,(1/2) = —(1 - 2"™")B,, (13)
5 (1) Bul)Buonls) =l 4y = DBuale40) — (= DB, +0) (19

m=0

Proof of Proposition 8. This is an analogue of the proof of [9, Theorem A]. Put x =y = 1/2
in (14) and use (12) and (13). Then we have

n

> (:1) Bin(1/2)Byn(1/2)

m=0

- (”) (1—2"™)(1— 2"\ B, By = —(n — 1)B,..
m
m=0

Obviously, one has

(1 =21y (1 — 2177 Fm)y = 2(1 — 27™)(1 — 27"F™) 4 2(27™ — 1) + 1,

2n

2
3 ( ”) By Bonm = — (21 — 1) Ban.
m

m=0
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Therefore it holds that

2n—2

> 21271 -2 (ZL) BinBon-—m = (272" —1)(2n — 1) By,,.

By using (11), we obtain

n—1

S coem)ce(2n — 2m) =

m=1

2n—1
2

¢°(2n). (15)

On the other hand, by the harmonic product formula, it holds that

C°(2m)C°(2n — 2m) = ¢°(2m, 2n — 2m) + (°(2n — 2m, 2m) + ¢°(2n).

By summing the above formula on m from 1 to n — 1, we have

n—1 n—1
> ¢e2m)¢°(2n —2m) =2 (°(2m,2n — 2m) + (n — 1)¢°(2n). (16)
m=1 m=1
Hence we obtain Proposition 8 by (15) and (16). O
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