# Remarks on double zeta values of level 2 

Takashi Nakamura, Koji Tasaka


#### Abstract

We give a generator of the space spanned by double zeta values of level 2 with odd weight by using explicit formulas for double Euler sums.


## 1 Introduction and main results

Double zeta values of level 2 are defined by

$$
\begin{equation*}
\zeta^{\mathbf{o}}(r, s)=\sum_{\substack{m>n>0 \\ m, n: \text { odd }}} \frac{1}{m^{r} n^{s}}, \tag{1}
\end{equation*}
$$

where $r, s$ are positive integers with $r \geq 2$. These real values can be regarded as a kind of Euler sums (see Section 2) or multiple Hurwitz series (see [8]), which are well-studied, but apparently it is believed that the form (1) matches the theory of modular forms. The relationship between double zeta values and modular forms was originally studied in [5]. As a consequence of their study, Kaneko and Tasaka [7] considered the case of level 2 involved "double Eisenstein series", and they found an explicit connection between modular forms of $\Gamma_{0}(2)$ and (1), when weight $(=r+s)$ is even.

In the present paper, we mainly discuss the case of odd weight. Let $\mathcal{D} \mathcal{O}_{k}$ be the $\mathbb{Q}$-vector space spanned by double zeta values of level 2 and weight $k$, namely,

$$
\mathcal{D} \mathcal{O}_{k}=\left\langle\zeta^{\mathbf{o}}(r, k-r) \mid 2 \leq r \leq k-1\right\rangle_{\mathbb{Q}} .
$$

We first introduce our result about a generator of the space $\mathcal{D} \mathcal{O}_{k}$.
Theorem 1. For odd $k \geq 3$, the $(k+1) / 2$ numbers $\left\{(\log 2) \pi^{k-1}, \zeta(k-2 i) \pi^{2 i} \mid 0 \leq i \leq\right.$ $(k-3) / 2\}$ span the same space as the space $\mathcal{D} \mathcal{O}_{k}$.

We remark that Theorem 1 can be viewed as the level 2 version of Zagier's result ([11, Theorem 2]). He proved that, for odd $k \geq 5$, the $\mathbb{Q}$-vector space $\mathcal{D} \mathcal{Z}_{k}$ generated by double zeta values $\zeta(r, s)=\sum_{m>n>0} m^{-r} n^{-s}$ of weight $k$ has the generator $\left\{\zeta(k-2 i) \pi^{2 i} \mid 0 \leq\right.$ $i \leq(k-3) / 2\}$, which we believe being a base. He also showed that the $(k-1) / 2$ numbers $\zeta(k-1-2 i, 2 i+1)(0 \leq i \leq(k-3) / 2)$ satisfy $\operatorname{dim} S_{k-1}(1)+\operatorname{dim} S_{k+1}(1)=[(k-11) / 6]$ $\mathbb{Q}$-linear relations (see [11, Theorem 3]), where $S_{k}(1)$ is the space of cusp forms of weight $k$ on $\mathrm{SL}_{2}(\mathbb{Z})$. The same discussion for our case is given in the following theorem.

Theorem 2. For odd $k \geq 5$, the $\mathbb{Q}$-vector space spanned by $\zeta^{\mathbf{o}}(i, k-i)(2 \leq i \leq k-2)$ is the same space as $\mathcal{D} \mathcal{Z}_{k}$.

Theorem 2 implies that the $k-3$ numbers $\zeta^{\mathbf{o}}(i, k-i)(2 \leq i \leq k-2)$ satisfy $\operatorname{dim} S_{k-1}(2)+$ $\operatorname{dim} S_{k+1}(2)=(k-5) / 2 \mathbb{Q}$-linear relations, where $S_{k}(2)$ is the space of cusp forms of weight $k$ on $\Gamma_{0}(2)$. However, there are no direct connection between "period polynomials" and double zeta values of level 2 in the meaning as in $\mathrm{SL}_{2}(\mathbb{Z})$ (see [11, Section 6]).

In Section 2, we give proofs of Theorems 1 and 2 by using explicit formulas of double zeta values of level 2 which follows from evaluations of double Euler sums. The last section we present some remarks on the sum formula of double zeta values of level 2 .

## 2 Euler sums and proof of Theorem 1

Now we define the double Euler sums by

$$
\begin{aligned}
\zeta(r, s) & =\sum_{m>n>0} \frac{1}{m^{r} n^{s}}(r \geq 2, s \geq 1), \quad \zeta(r, \bar{s})=\sum_{m>n>0} \frac{(-1)^{n}}{m^{r} n^{s}}(r \geq 2, s \geq 1), \\
\zeta(\bar{r}, s) & =\sum_{m>n>0} \frac{(-1)^{m}}{m^{r} n^{s}}(r, s \geq 1), \quad \zeta(\bar{r}, \bar{s})=\sum_{m>n>0} \frac{(-1)^{n+m}}{m^{r} n^{s}}(r, s \geq 1) .
\end{aligned}
$$

(Each ranges of $r, s$ give convergence conditions of each double series.) These real values have a deep connection with knot theory and quantum field theory (e.g. [2, 3]), and many studies have been done. In [3], they conjectured about the number of (algebra) generators of the space of Euler sums. Let $\mathcal{D} \mathcal{L}_{k}$ be a $\mathbb{Q}$-vector space spanned by double Euler sums of weight $k$. We can easily deduce that Broadhurst-Kreimer conjecture involved double Euler sums says

$$
\operatorname{dim}_{\mathbb{Q}} \mathcal{D} \mathcal{L}_{k}=\left[\frac{k+1}{2}\right] \quad(k \geq 2) .
$$

For odd $k>2$, we can prove that the space $\mathcal{D} \mathcal{L}_{k}$ is spanned by the set $\left\{(\log 2) \pi^{k-1}, \zeta(k-\right.$ $\left.2 i) \pi^{2 i} \mid 0 \leq i \leq(k-3) / 2\right\}$ by using the following closed formulas for double Euler sums (see for example [10, (4) and (5)]). Let $\zeta(\bar{k})=\sum_{n>0}(-1)^{n} n^{-k}$. We note that $\zeta(\overline{1})=-\log 2$ and $\zeta(\bar{k})=\left(2^{1-k}-1\right) \zeta(k)$ for $k \geq 2$.

Proposition 3. For odd $k \geq 3$ and positive integers $r$, $s$ with $r+s=k$, double Euler sums
are given in terms of products $\zeta(2 i) \zeta(k-2 i), \zeta(\overline{2 i}) \zeta(k-2 i)$ and $\zeta(\overline{2 i}) \zeta(\overline{k-2 i})$ as follows:

$$
\begin{align*}
& 2 \zeta(\bar{r}, \bar{s})=\zeta(\bar{r}) \zeta(\bar{s})-\zeta(k)-(-1)^{s} \zeta(\bar{r}) \zeta(\bar{s})+(-1)^{s}\left\{-\binom{k-1}{r} \zeta(\bar{k})\right. \\
& -\binom{k-1}{s} \zeta(\bar{k})+2 \sum_{j=1}^{[r / 2]}\binom{k-2 j-1}{r-2 j} \zeta(\overline{k-2 j}) \zeta(2 j) \\
& \left.+2 \sum_{j=1}^{[s / 2]}\binom{k-2 j-1}{s-2 j} \zeta(\overline{k-2 j}) \zeta(2 j)\right\}(\text { for all } r, s \geq 1),  \tag{2}\\
& 2 \zeta(r, \bar{s})=\zeta(r) \zeta(\bar{s})-\zeta(\bar{k})-(-1)^{s} \zeta(r) \zeta(\bar{s})+(-1)^{s}\left\{-\binom{k-1}{r} \zeta(\bar{k})\right. \\
& -\binom{k-1}{s} \zeta(k)+2 \sum_{j=1}^{[r / 2]}\binom{k-2 j-1}{r-2 j} \zeta(\overline{k-2 j}) \zeta(\overline{2 j}) \\
& \left.+2 \sum_{j=1}^{[s / 2]}\binom{k-2 j-1}{s-2 j} \zeta(k-2 j) \zeta(\overline{2 j})\right\}(\text { for all } r \geq 2, s \geq 1),  \tag{3}\\
& 2 \zeta(\bar{r}, s)=\zeta(\bar{r}) \zeta(s)-\zeta(\bar{k})-(-1)^{s} \zeta(\bar{r}) \zeta(s)+(-1)^{s}\left\{-\binom{k-1}{r} \zeta(k)\right. \\
& -\binom{k-1}{s} \zeta(\bar{k})+2 \sum_{j=1}^{[r / 2]}\binom{k-2 j-1}{r-2 j} \zeta(k-2 j) \zeta(\overline{(2 j}) \\
& \left.+2 \sum_{j=1}^{[s / 2]}\binom{k-2 j-1}{s-2 j} \zeta(\overline{k-2 j}) \zeta(\overline{2 j})\right\}(\text { for all } r \geq 1, s \geq 2) . \tag{4}
\end{align*}
$$

The exceptional case of (4), which is $s=1$, can be written as follows:

$$
\begin{equation*}
2 \zeta(\bar{r}, 1)=\zeta(r+1)+(r-1) \zeta(\overline{r+1})-2 \sum_{j=1}^{r / 2-1} \zeta(r+1-2 j) \zeta(\overline{2 j}) \tag{5}
\end{equation*}
$$

Zagier showed that the double zeta value $\zeta(r, s)$ with $r+s=k$ ( $k$ :odd) can be expressed as $\mathbb{Q}$-linear combinations of two products $\zeta(2 i) \zeta(k-2 i)(0 \leq i \leq(k-3) / 2)$ (see [11, Proposition 7]), using his method which is based on the double shuffle relations and the theory of generating functions. By his results and Proposition 3, the space spanned by $\left\{(\log 2) \pi^{k-1}, \zeta(k-2 i) \pi^{2 i} \mid 0 \leq i \leq(k-3) / 2\right\}$ contains $\mathcal{D} \mathcal{L}_{k}$. Conversely, using shuffle products (see [1]), we can easily check that two products of $\zeta(2 i) \zeta(\overline{k-2 i})(0 \leq i \leq(k-1) / 2)$ are in the space $\mathcal{D} \mathcal{L}_{k}$. Then we have the following theorem.

Theorem 4. For odd $k \geq 3$, the $(k+1) / 2$ numbers $\left\{(\log 2) \pi^{k-1}, \zeta(k-2 i) \pi^{2 i} \mid 0 \leq i \leq\right.$ $(k-3) / 2\}$ span the same space as $\mathcal{D} \mathcal{L}_{k}$.

Now we begin considering the case of double zeta values of level 2 and shall give a proof of Theorem 1. For $r \geq 2$ and $s \geq 1$, it is easily seen that

$$
\begin{equation*}
\zeta^{\mathbf{o}}(r, s)=\frac{1}{4}(\zeta(r, s)-\zeta(\bar{r}, s)-\zeta(r, \bar{s})+\zeta(\bar{r}, \bar{s})), \tag{6}
\end{equation*}
$$

and this shows that $\mathcal{D} \mathcal{L}_{k}$ contains $\mathcal{D} \mathcal{O}_{k}$. (However, more precisely, one can find $\mathcal{D} \mathcal{L}_{k}=\mathcal{D} \mathcal{O}_{k}$ from Theorem 1 and Theorem 4.) Using (2), (3), (4), (5) and (6), we can easily obtain the explicit formulas for double zeta values of level 2 .

Proposition 5. For odd $k \geq 5$ and $k=r+s(r, s \geq 2)$, one has

$$
\begin{align*}
& 2 \zeta^{\mathbf{o}}(r, s)=-\zeta^{\mathbf{o}}(k)+\left(1-(-1)^{s}\right) \zeta^{\mathbf{o}}(r) \zeta^{\mathbf{o}}(s)  \tag{7}\\
& +2(-1)^{s} \sum_{j=1}^{\max ([r / 2],[s / 2])}\left(\binom{k-2 j-1}{r-2 j}+\binom{k-2 j-1}{s-2 j}\right) \zeta^{\mathbf{e}}(k-2 j) \zeta^{\mathbf{o}}(2 j),
\end{align*}
$$

where $\zeta^{\mathbf{e}}(k)=\sum_{n>0}(2 n)^{-k}$. Furthermore, for $a \geq 1$, we have

$$
\begin{equation*}
\left.2 \zeta^{\mathbf{o}}(2 a, 1)=-2 \sum_{j=1}^{a-1} \zeta^{\mathbf{e}}(2 a-2 j+1) \zeta^{\mathbf{o}}(2 j)-2 \zeta(\overline{1}) \zeta^{\mathbf{o}}(2 a)-\zeta^{\mathbf{o}}(2 a+1)\right) \tag{8}
\end{equation*}
$$

Our strategy to prove Theorem 1 is to find a basis of the space $\mathcal{D} \mathcal{O}_{k}$. To do this, now we give following two lemmas.

Lemma 6. For odd $k \geq 3$, the $(k-1) / 2$ numbers $\left\{\zeta(k-2 i) \pi^{2 i} \mid 0 \leq i \leq(k-3) / 2\right\}$ span the same space as the $(k-1) / 2$ numbers $\left\{\zeta^{\mathbf{o}}(k-2 r, 2 r), \zeta^{\mathbf{o}}(k) \mid 1 \leq r \leq(k-3) / 2\right\}$.

Proof. Using (7), for odd $k \geq 5$, one has

$$
\begin{aligned}
& \zeta^{\mathbf{o}}(k-2 r, 2 r) \\
& =-\frac{1}{2} \zeta^{\mathbf{o}}(k)+\sum_{j=1}^{(k-3) / 2}\left(\binom{k-2 j-1}{k-2 r-1}+\binom{k-2 j-1}{2 r-1}\right) \zeta^{\mathbf{e}}(k-2 j) \zeta^{\mathbf{o}}(2 j) .
\end{aligned}
$$

Let $M_{k}$ be the $(k-1) / 2 \times(k-1) / 2$ matrix whose coefficients are

$$
m_{r j}= \begin{cases}\binom{k-2 j-1}{k-2 r-1}+\binom{k-2 j-1}{2 r-1} & 1 \leq r, j \leq(k-3) / 2 \\ \delta_{r, j} & \text { others }\end{cases}
$$

where $\delta_{r, j}$ is Kronecker's delta. Surprisingly, the matrix $M_{k}$ is exactly equal to $\mathcal{A}$ of [11, Lemma 3] excepting 1-th row and 1-th column of $M_{k}$, and then it has non-zero determinant. This induces the following equality:

$$
\begin{align*}
& \left\langle\zeta^{\mathbf{o}}(k), \zeta^{\mathbf{o}}(k-2 i, 2 i) \mid 1 \leq i \leq(k-3) / 2\right\rangle_{\mathbb{Q}}  \tag{9}\\
& =\left\langle\zeta^{\mathbf{o}}(k), \zeta^{\mathbf{e}}(k-2 i) \zeta^{\mathbf{o}}(2 i) \mid 1 \leq i \leq(k-3) / 2\right\rangle_{\mathbb{Q}}
\end{align*}
$$

which completes the proof of Lemma 6.

Note that since $\zeta^{\mathbf{o}}(k)=\left(1-2^{-k}\right) \zeta(k)$ and $\zeta^{\mathbf{e}}(k)=2^{-k} \zeta(k)$ for $k \geq 2$, the right hand-side of (9) is equal to the space $\mathcal{D} \mathcal{Z}_{k}$.

Lemma 7. For each odd $k \geq 3, \zeta^{\mathbf{o}}(k)$ can be expressed as $\mathbb{Q}$-linear combinations of $\zeta^{\mathbf{o}}(r, k-$ $r)(2 \leq r \leq k-2)$.

Proof. It is easy to check the following

$$
\begin{aligned}
& \zeta^{\mathbf{o}}(2, k-2) \\
& =-\frac{1}{2} \zeta^{\mathbf{o}}(k)+\zeta^{\mathbf{o}}(2) \zeta^{\mathbf{o}}(k-2)-\sum_{j=1}^{(k-3) / 2} \frac{k-2 j-1+\delta_{j, 1}}{2^{k-2 j}-1} \zeta^{\mathbf{o}}(k-2 j) \zeta^{\mathbf{o}}(2 j) .
\end{aligned}
$$

Using $\zeta^{\mathbf{o}}(a) \zeta^{\mathbf{o}}(b)=\zeta^{\mathbf{o}}(a, b)+\zeta^{\mathbf{o}}(b, a)+\zeta^{\mathbf{o}}(a+b)$, we have

$$
\begin{aligned}
& \zeta^{\mathbf{o}}(k)\left(-\frac{1}{2}+\sum_{j=1}^{(k-3) / 2} \frac{k-2 j-1+\delta_{j, 1}}{2^{k-2 j}-1}\right) \\
& =\zeta^{\mathbf{o}}(k-2,2)-\sum_{j=1}^{(k-3) / 2} \frac{k-2 j-1+\delta_{j, 1}}{2^{k-2 j}-1}\left(\zeta^{\mathbf{o}}(k-2 j, 2 j)+\zeta^{\mathbf{o}}(2 j, k-2 j)\right) .
\end{aligned}
$$

The coefficient of $\zeta^{\mathbf{o}}(k) / 2$

$$
2\left(-\frac{1}{2}+\sum_{j=1}^{(k-3) / 2} \frac{k-2 j-1+\delta_{j, 1}}{2^{k-2 j}-1}\right)
$$

are non-zero, because it is a 2 -adic unit, which completes the proof.
Proof of Theorem 1. Let $\mathcal{D} \mathcal{O}_{k}^{\text {ev }}$ be the space spanned by $\left\{\zeta^{\mathbf{o}}(k-2 r, 2 r), \zeta^{\mathbf{o}}(k-1,1), \zeta^{\mathbf{o}}(k) \mid\right.$ $1 \leq r \leq(k-3) / 2\}$, so that,

$$
\mathcal{D} \mathcal{O}_{k}^{\text {ev }}=\left\langle\zeta^{\mathbf{o}}(k-2 r, 2 r), \zeta^{\mathbf{o}}(k-1,1), \zeta^{\mathbf{o}}(k) \mid 1 \leq r \leq(k-3) / 2\right\rangle_{\mathbb{Q}} .
$$

From Lemma 6 and (8), we have

$$
\left\langle(\log 2) \pi^{k-1}, \zeta(3) \pi^{k-3}, \ldots, \zeta(k-2) \pi^{2}, \zeta(k)\right\rangle_{\mathbb{Q}}=\mathcal{D} \mathcal{O}_{k}^{\mathrm{ev}}
$$

On the other hand, by Proposition 5 and Lemma 7, one can find

$$
\left\langle(\log 2) \pi^{k-1}, \zeta(3) \pi^{k-3}, \ldots, \zeta(k-2) \pi^{2}, \zeta(k)\right\rangle_{\mathbb{Q}} \supset \mathcal{D} \mathcal{O}_{k} \supset \mathcal{D} \mathcal{O}_{k}^{\mathrm{ev}}
$$

which completes the proof of Theorem 1.
Proof of Theorem 2. Let $\mathcal{D} \mathcal{O}_{k}^{*}$ be the space spanned by $\zeta^{\mathbf{o}}(r, k-r)(2 \leq r \leq k-2)$. By Proposition 5 and Lemma 6, the space generated by $\left\{\zeta(k-2 i) \pi^{2 i} \mid 0 \leq i \leq(k-3) / 2\right\}$ is the same space as the space $\mathcal{D} \mathcal{O}_{k}^{*}$, and this induces $\mathcal{D O}_{k}^{*}=\mathcal{D} \mathcal{Z}_{k}$, which completes the proof of Theorem 2.

## 3 Remarks on the sum formula

When $k$ is even, Kaneko and Tasaka found the relationship between double zeta values of level 2 and modular forms (see [7, Corollary p.17]), and they also showed the following sum formula (see [7, Theorem 1]), using their 'double shuffle relation'.

Proposition 8. For even $k \geq 4$, we have

$$
\begin{equation*}
\sum_{r=1}^{k / 2-1} \zeta^{\mathbf{o}}(2 r, k-2 r)=\frac{1}{4} \zeta^{\mathbf{o}}(k) \tag{10}
\end{equation*}
$$

Proposition 8 can be extended to certain symmetric sums of multiple zeta values of level 2 by using Hoffman's 'harmonic product' (see [6, Theorem 2.2]). In this section, we give another proof of Proposition 8 using certain properties of the Bernoulli polynomials.

We denote by $B_{n}(x)$ the $n$-th Bernoulli polynomial defined by

$$
\frac{t e^{t x}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, \quad|t|<2 \pi
$$

and the $n$-th Bernoulli number $B_{n}$ by $B_{n}:=B_{n}(0)$. Euler proved the next equations;
Lemma 9. For $n \geq 1$, we have

$$
\begin{equation*}
\zeta^{\mathbf{o}}(2 n)=\left(1-2^{-2 n}\right) \zeta(2 n) \quad \text { and } \quad \zeta(2 n)=-\frac{\left(-4 \pi^{2}\right)^{n}}{2(2 n)!} B_{2 n} \tag{11}
\end{equation*}
$$

Lemma 10 (see [4, p. 4, 6 and 119]). We have the following properties;

$$
\begin{gather*}
B_{2 n-1}=0, \quad n \geq 2,  \tag{12}\\
B_{n}(1 / 2)=-\left(1-2^{1-n}\right) B_{n},  \tag{13}\\
\sum_{m=0}^{n}\binom{n}{m} B_{m}(x) B_{n-m}(y)=n(x+y-1) B_{n-1}(x+y)-(n-1) B_{n}(x+y) . \tag{14}
\end{gather*}
$$

Proof of Proposition 8. This is an analogue of the proof of [9, Theorem A]. Put $x=y=1 / 2$ in (14) and use (12) and (13). Then we have

$$
\begin{aligned}
& \sum_{m=0}^{n}\binom{n}{m} B_{m}(1 / 2) B_{n-m}(1 / 2) \\
& =\sum_{m=0}^{n}\binom{n}{m}\left(1-2^{1-m}\right)\left(1-2^{1-n+m}\right) B_{m} B_{n-m}=-(n-1) B_{n} .
\end{aligned}
$$

Obviously, one has

$$
\begin{aligned}
& \left(1-2^{1-m}\right)\left(1-2^{1-n+m}\right)=2\left(1-2^{-m}\right)\left(1-2^{-n+m}\right)+2\left(2^{-m}-1\right)+1, \\
& \sum_{m=0}^{2 n}\binom{2 n}{m} B_{m} B_{2 n-m}=-(2 n-1) B_{2 n} .
\end{aligned}
$$

Therefore it holds that

$$
\sum_{m=2}^{2 n-2} 2\left(1-2^{-m}\right)\left(1-2^{-n+m}\right)\binom{2 n}{m} B_{m} B_{2 n-m}=\left(2^{-2 n}-1\right)(2 n-1) B_{2 n}
$$

By using (11), we obtain

$$
\begin{equation*}
\sum_{m=1}^{n-1} \zeta^{\mathbf{o}}(2 m) \zeta^{\mathbf{o}}(2 n-2 m)=\frac{2 n-1}{2} \zeta^{\mathbf{o}}(2 n) . \tag{15}
\end{equation*}
$$

On the other hand, by the harmonic product formula, it holds that

$$
\zeta^{\mathbf{o}}(2 m) \zeta^{\mathbf{o}}(2 n-2 m)=\zeta^{\mathbf{o}}(2 m, 2 n-2 m)+\zeta^{\mathbf{o}}(2 n-2 m, 2 m)+\zeta^{\mathbf{o}}(2 n) .
$$

By summing the above formula on $m$ from 1 to $n-1$, we have

$$
\begin{equation*}
\sum_{m=1}^{n-1} \zeta^{\mathbf{o}}(2 m) \zeta^{\mathbf{o}}(2 n-2 m)=2 \sum_{m=1}^{n-1} \zeta^{\mathbf{o}}(2 m, 2 n-2 m)+(n-1) \zeta^{\mathbf{o}}(2 n) \tag{16}
\end{equation*}
$$

Hence we obtain Proposition 8 by (15) and (16).

## References

[1] T. Arakawa, M. Kaneko, Multiple L-values, J. Math. Soc. Japan, 56-4 (2004), 967-991.
[2] D. J. Broadhurst, D. Kreimer, Knots and numbers in Phi ${ }_{4}{ }_{4}$ theory to 7 loops and beyond. Int. J. Mod. Phys. (C6) 519-524, (1995)
[3] D. J. Broadhurst, D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B 393 403-412, (1997)
[4] H. Cohen, Number theory. Vol. II. Analytic and modern tools. Graduate Texts in Mathematics, 240. Springer, New York, 2007.
[5] H. Gangl, M. Kaneko, D. Zagier, Double zeta values and modular forms, Automorphic forms and Zeta functions", Proceedings of the conference in memory of Tsuneo Arakawa, World Scientific, (2006), 71-106.
[6] M. E. Hoffman, Multiple harmonic series. Pacific J. Math. 152 (2) 275-290, (1992)
[7] M. Kaneko, K. Tasaka, Double zeta values, double Eisenstein series, and modular forms of level 2. preprint (2011).
[8] M. R. Murty, K. Sinha, Multiple Hurwitz zeta functions. Multiple Dirichlet series, automorphic forms, and analytic number theory, 135-156, Proc. Sympos. Pure Math., 75, Amer. Math. Soc., Providence, RI, 2006.
[9] T. Nakamura, Restricted and weighted sum formulas for double zeta values of even weight. Šiauliai Mathematical Seminar. 4 (2009), 151-155.
[10] Z. Xia, T. Cai and D. M. Bradley Signed q-analogs of Tornheim's double series. Proc. Amer. Math. Soc. 136 (2008), no. 8, 2689-2698.
[11] D. Zagier, Evaluation of the multiple zeta values $\zeta(2, \ldots, 2,3,2, \ldots, 2)$. Ann. of Math. 175 (2012), 977-1000.

